Encyclopedia … combined with a great Buyer's Guide!

VLib
Virtual
Library
Sponsoring this encyclopedia:     and others

Transmissivity

Definition: the ratio of transmitted optical power to the incident optical power at a surface

German: Transmissivität

Category: general optics

Formula symbol: T

How to cite the article; suggest additional literature

Author:

The transmissivity of a surface (e.g. an interface between two optical media) is defined as the ratio of transmitted optical power to the incident optical power, as e.g. measured with a light beam. Usually, it is applied to cases with exactly flat unstructured surfaces, i.e., not to cases with extended objects or light scattering.

Strictly speaking, the term transmissivity should be used only for transmission through one particular surface – not for example for transmission through extended objects, such as glass plates or optical resonators; in such cases, the term transmittance is appropriate. However, it is common, for example, to specify transmissivities of laser mirrors, although these are usually dielectric mirrors, involving interferences between reflections from many different optical interfaces. One may actually consider a whole thin-film structure, usually having an overall thickness far below 1 mm, as one surface. A more questionable case is a fiber Bragg grating, which can be far more extended.

Note that for non-normal incidence the ratio of transmitted and incident optical intensity does generally not match the transmissivity. This is essentially because the change of propagation direction due to refraction is also associated with a change in beam area.

Relation to Transmission Coefficients

The transmission through an optical surface is also often described with a complex transmission coefficient. Its squared modulus is the transmissivity, and it also carries a complex phase according to the optical phase change associated with the transmission.

Fresnel Equations

Complex transmission coefficients and transmissivity for optical interfaces can be calculated with Fresnel equations. They depend only on the refractive indexs of both optical materials.

Questions and Comments from Users

Here you can submit questions and comments. As far as they get accepted by the author, they will appear above this paragraph together with the author’s answer. The author will decide on acceptance based on certain criteria. Essentially, the issue must be of sufficiently broad interest.

Please do not enter personal data here; we would otherwise delete it soon. (See also our privacy declaration.) If you wish to receive personal feedback or consultancy from the author, please contact him e.g. via e-mail.

Your question or comment:

Spam check:

  (Please enter the sum of thirteen and three in the form of digits!)

By submitting the information, you give your consent to the potential publication of your inputs on our website according to our rules. (If you later retract your consent, we will delete those inputs.) As your inputs are first reviewed by the author, they may be published with some delay.

See also: transmittance, Fresnel equations
and other articles in the category general optics

preview

If you like this page, please share the link with your friends and colleagues, e.g. via social media:

These sharing buttons are implemented in a privacy-friendly way!